摘要。基于晶格的密码学是量子后安全加密方案的有前途的基础,其中有错误的学习(LWE)问题是钥匙交换,收益和同构计算的基石。LWE的现有结构化变体,例如Ring-Lwe(RLWE)和Module-Lwe(MLWE),依靠多项式环以提高效率。但是,这些结构固有地遵循传统的多项式乘法规则,并以它们表示结构化矢量化数据的能力来实现。这项工作介绍了多种元素(VLWE),这是建立在代数几何形状基于代数几何形状的新的结构化晶格概率。与RLWE和MLWE不同,后者使用标准乘法使用多项式环,VLWE在代数品种定义的多元多项式环上使用VLWE操作。一个关键的区别是这些多项式不包含混合变量,并且乘法操作是定义的坐标,而不是通过标准的多项式乘法。该结构可以直接编码和同态处理高维数据,同时保持最差的案例至平均案例硬度降低。我们通过将VLWE的安全性降低到解决理想SVP的多个独立实例中,证明了其针对分类和量子攻击的弹性。此外,我们分析了混合代数武器攻击的影响,表明现有的Gröbner基础和降低技术并不能直接损害VLWE的安全性。建立在该基础上,我们基于VLWE构建了矢量同态加密方案,该方案支持结构化计算,同时维持受控的噪声增长。此方案为隐私的机器学习,加密搜索和对结构化数据的计算进行了潜在的优势。我们的结果位置VLWE是基于晶格的密码学中的一种新颖而独立的范式,杠杆几何形状可以使新的加密功能超出传统的多项式戒指。
主要关键词